Reverse Resonance: Mirror-Scaling Invariance in Positional Number Systems

Abstract

We describe a newly discovered numerical invariant in positional number systems, where the digitreversal operation preserves the quadratic form under integer scaling. The relationship is defined as:

$$R_B(n^2) = (m n)^2,$$

where \$R_B(x)\$ is the digit-reversal of \$x\$ in base \$B\$, and \$m>1\$ is an integer scaling factor. This phenomenon, termed **Reverse Resonance**, occurs only for rare discrete triplets \$(B, n, m)\$ and represents a mirror-scaling symmetry that connects reflection and proportional amplification. The discovery establishes a new class of reversible numeric transformations with potential applications in computation, cryptography, and physics.

1. Introduction

Digit reversal in positional notation usually destroys algebraic structure. However, in specific rare configurations, the reversed square of a number remains a perfect square of an integer multiple. The canonical case is observed in base 10:

This identity reveals a perfect mirror relationship between reflection and a 3x scaling transformation, forming a unique invariant under digit reversal.

2. General Formulation

For a given base \$B\$, the invariant holds when:

$$R_B((aB+b)^2) = (m aB + b)^2,$$
\$\$

which is true if and only if m divides (B-1) and $a=b=\frac{B-1}{m}$.

Empirically confirmed resonant triplets include:

Base \$B\$	\$n\$	\$m\$		
5	12	2		
9	4	2		
10	33	3		

Base \$B\$	\$n\$	\$m\$
17	72	4
19	6	3
26	135	5

Each satisfies the mirror-scaling invariant exactly.

3. Properties

- Uniqueness: Only one valid \$(n,m)\$ pair per base \$B\$ up to \$B=32\$.
- Invariance: The digit reversal preserves informational entropy.
- **Reversibility:** The mapping is fully reversible with no data loss.
- Scaling: The mirror transformation is equivalent to linear scaling by \$m\$.

4. Interpretation

Reverse Resonance represents a *mirror-scaling symmetry* between information and energy domains. In analogy to physical invariants, it expresses a conservation-like relationship:

\$\$ E \propto I, \$\$

where reflection corresponds to energy inversion and scaling modifies information density. The system's fixed points \$(B,n,m)\$ can be viewed as *standing waves* of digital geometry, where information structure remains invariant under reflection and magnification.

5. Applications

- 1. **Reversible Computation (CPU/ALU Design):** Enables reversible logic circuits minimizing energy loss (Landauer limit).
- 2. **Cryptographic Signatures:** Reversible checksums and mirror-based authentication for self-validating tokens.
- 3. Optical and Quantum Systems: Unitary mirror-scaling gates preserving amplitude structure.
- 4. **Watermarks & Anti-counterfeit Codes:** Encodes geometric invariance detectable under reflection or scaling.

6. Conclusion

The Reverse Resonance law defines a new form of digital symmetry, where reflection and scaling are equivalent transformations. It unites numerical harmony, geometric invariance, and informational reversibility within a single compact relation:

 $$$ \ensuremath{ \mbox{Noxed} (R_B(n^2) = (m n)^2}. $$$

This	discovery	opens	a novel	field a	at the	intersection	of	number	theory,	reversible	computation,	and
info	rmation ph	nysics.										